267 research outputs found

    PROSET — A Language for Prototyping with Sets

    Get PDF
    We discuss the prototyping language PROSET(Prototyping with Sets) as a language for experimental and evolutionary prototyping, focusing its attention on algorithm design. Some of PROSET’s features include generative communication, flexible exception handling and the integration of persistence. A discussion of some issues pertaining to the compiler and the programming environment conclude the pape

    Torque Around the Center of Mass: Dynamic Stability During Quadrupedal Arboreal Locomotion in the Siberian Chipmunk (Tamias sibiricus)

    Get PDF
    When animals travel on tree branches, avoiding falls is of paramount importance. Animals swiftly running on a narrow branch must rely on movement to create stability rather than on static methods. We examined how Siberian chipmunks (Tamias sibiricus) remain stable while running on a narrow tree branch trackway. We examined the pitch, yaw, and rolling torques around the center of mass, and hypothesized that within a stride, any angular impulse (torque during step time) acting on the center of mass would be canceled out by an equal and opposite angular impulse. Three chipmunks were videotaped while running on a 2 cm diameter branch trackway. We digitized the videos to estimate center of mass and center of pressure positions throughout the stride. A short region of the trackway was instrumented to measure components of the substrate reaction force. We found that positive and negative pitch angular impulse was by far the greatest in magnitude. The anterior body was pushed dorsally (upward) when the forelimbs landed simultaneously, and then the body pitched in the opposite direction as both hindlimbs simultaneously made contact. There was no considerable difference between yaw and rolling angular impulses, both of which were small and equal between fore- and hindlimbs. Net angular impulses around all three axes were usually greater than or less than zero (not balanced). We conclude that the chipmunks may balance out the torques acting on the center of mass over the course of two or more strides, rather than one stride as we hypothesized

    The novel protein KBP regulates mitochondria localization by interaction with a kinesin-like protein

    Get PDF
    BACKGROUND: Members of the Kinesin-3 family of kinesin-like proteins mediate transport of axonal vesicles (KIF1A, KIF1Bβ), distribution of mitochondria (KIF1Bα) and anterograde Golgi to ER vesicle transport (KIF1C). Until now, little is known about the regulation of kinesin-like proteins. Several proteins interact with members of this protein family. Here we report on a novel, KIF1 binding protein (KBP) that was identified in yeast two-hybrid screens. RESULTS: KBP was identified by using the yeast-two-hybrid system with an amino-terminal fragment of KIF1C as a bait that is strongly homologous to KIF1B. Here we investigated the interaction of KBP and KIF1B. The full length proteins coimmunoprecipitated after overexpression and in untransfected 293 cells. Immunofluorescence experiments revealed that KBP was mainly localized to mitochondria, as has been described for KIF1Bα. Overexpression of a deletion mutant or reduction of the KBP protein level using an anti-sense construct led to an aggregation of mitochondria. Such an effect is probably due to the lower activity of KIF1Bα in the absence of KBP, as was revealed in motility assays. CONCLUSION: KBP is a new binding partner for KIF1Bα that is a regulator of its transport function and thus represents a new type of kinesin interacting protein

    Osseointegration of zirconia implants: an SEM observation of the bone-implant interface

    Get PDF
    Background The successful use of zirconia ceramics in orthopedic surgery led to a demand for dental zirconium-based implant systems. Because of its excellent biomechanical characteristics, biocompatibility, and bright tooth-like color, zirconia (zirconium dioxide, ZrO2) has the potential to become a substitute for titanium as dental implant material. The present study aimed at investigating the osseointegration of zirconia implants with modified ablative surface at an ultrastructural level. Methods A total of 24 zirconia implants with modified ablative surfaces and 24 titanium implants all of similar shape and surface structure were inserted into the tibia of 12 Gottinger minipigs. Block biopsies were harvested 1 week, 4 weeks or 12 weeks (four animals each) after surgery. Scanning electron microscopy (SEM) analysis was performed at the bone implant interface. Results Remarkable bone attachment was already seen after 1 week which increased further to intimate bone contact after 4 weeks, observed on both zirconia and titanium implant surfaces. After 12 weeks, osseointegration without interposition of an interfacial layer was detected. At the ultrastructural level, there was no obvious difference between the osseointegration of zirconia implants with modified ablative surfaces and titanium implants with a similar surface topography. Conclusion The results of this study indicate similar osseointegration of zirconia and titanium implants at the ultrastructural level

    Embryonic stem cells in scaffold-free three-dimensional cell culture: osteogenic differentiation and bone generation

    Get PDF
    Extracorporeal formation of mineralized bone-like tissue is still an unsolved challenge in tissue engineering. Embryonic stem cells may open up new therapeutic options for the future and should be an interesting model for the analysis of fetal organogenesis. Here we describe a technique for culturing embryonic stem cells (ESCs) in the absence of artificial scaffolds which generated mineralized miromasses. Embryonic stem cells were harvested and osteogenic differentiation was stimulated by the addition of dexamethasone, ascorbic acid, and ß-glycerolphosphate (DAG). After three days of cultivation microspheres were formed. These spherical three-dimensional cell units showed a peripheral zone consisting of densely packed cell layers surrounded by minerals that were embedded in the extracellular matrix. Alizarine red staining confirmed evidence of mineralization after 10 days of DAG stimulation in the stimulated but not in the control group. Transmission electron microscopy demonstrated scorching crystallites and collagenous fibrils as early indication of bone formation. These extracellular structures resembled hydroxyl apatite-like crystals as demonstrated by distinct diffraction patterns using electron diffraction analysis. The micromass culture technique is an appropriate model to form three-dimensional bone-like micro-units without the need for an underlying scaffold. Further studies will have to show whether the technique is applicable also to pluripotent stem cells of different origin

    Search for dark matter produced in association with bottom or top quarks in √s = 13 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for weakly interacting massive particle dark matter produced in association with bottom or top quarks is presented. Final states containing third-generation quarks and miss- ing transverse momentum are considered. The analysis uses 36.1 fb−1 of proton–proton collision data recorded by the ATLAS experiment at √s = 13 TeV in 2015 and 2016. No significant excess of events above the estimated backgrounds is observed. The results are in- terpreted in the framework of simplified models of spin-0 dark-matter mediators. For colour- neutral spin-0 mediators produced in association with top quarks and decaying into a pair of dark-matter particles, mediator masses below 50 GeV are excluded assuming a dark-matter candidate mass of 1 GeV and unitary couplings. For scalar and pseudoscalar mediators produced in association with bottom quarks, the search sets limits on the production cross- section of 300 times the predicted rate for mediators with masses between 10 and 50 GeV and assuming a dark-matter mass of 1 GeV and unitary coupling. Constraints on colour- charged scalar simplified models are also presented. Assuming a dark-matter particle mass of 35 GeV, mediator particles with mass below 1.1 TeV are excluded for couplings yielding a dark-matter relic density consistent with measurements

    The origin and composition of carbonatite-derived carbonate-bearing fluorapatite deposits

    Get PDF
    Carbonate-bearing fluorapatite rocks occur at over 30 globally distributed carbonatite complexes and represent a substantial potential supply of phosphorus for the fertiliser industry. However, the process(es) involved in forming carbonate-bearing fluorapatite at some carbonatites remain equivocal, with both hydrothermal and weathering mechanisms inferred. In this contribution, we compare the paragenesis and trace element contents of carbonate-bearing fluorapatite rocks from the Kovdor, Sokli, Bukusu, Catalão I and Glenover carbonatites in order to further understand their origin, as well as to comment upon the concentration of elements that may be deleterious to fertiliser production. The paragenesis of apatite from each deposit is broadly equivalent, comprising residual magmatic grains overgrown by several different stages of carbonate-bearing fluorapatite. The first forms epitactic overgrowths on residual magmatic grains, followed by the formation of massive apatite which, in turn, is cross-cut by late euhedral and colloform apatite generations. Compositionally, the paragenetic sequence corresponds to a substantial decrease in the concentration of rare earth elements (REE), Sr, Na and Th, with an increase in U and Cd. The carbonate-bearing fluorapatite exhibits a negative Ce anomaly, attributed to oxic conditions in a surficial environment and, in combination with the textural and compositional commonality, supports a weathering origin for these rocks. Carbonate-bearing fluorapatite has Th contents which are several orders of magnitude lower than magmatic apatite grains, potentially making such apatite a more environmentally attractive feedstock for the fertiliser industry. Uranium and cadmium contents are higher in carbonate-bearing fluorapatite than magmatic carbonatite apatite, but are much lower than most marine phosphorites

    Measurements of top-quark pair differential cross-sections in the eμe\mu channel in pppp collisions at s=13\sqrt{s} = 13 TeV using the ATLAS detector

    Get PDF
    corecore